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The spectrum of bending waves of a thin conducting plate bearing an electric charge is investigated. It is 

proved that there exists a critical value of the field upon exceeding which bending instability of the plate 
Occurs, 

1. Waves on the surface of a charged conducting fluid have been investigated extensively in recent  years  

(see, e.g., [1 ]). Turn ing  the electric field on leads to renormalization of surface gravitational waves, and,  upon 

reaching and exceeding the critical field pressure, exponential  growth of the ampli tude of the waves, known as the 

T o n k s - F r e n k e l '  instabili ty [2 ], takes place. Electric charges are located within an ext remely  thin surface layer  of 

the fluid and,  since a single charged surface is present ,  a "negative" field pressure is exer ted on the fluid in all 

cases (even if the surface is not per turbed) .  It is of interest  to investigate the situation where no pressure is exer ted  

on the surface by the electric field in the equilibrium state. It is evident that this situation is realized for a plane 

conductor  layer  both surfaces of which bear  charges distributed with identical densities. For a fluid, this situation 

most likely can occur only under  conditions of weightlessness and is a subject of experimental  and theoretical  

investigations under  microgravity conditions [3 ]. However, under  ordinary  terrestrial  conditions, this situation is 

realized in the case of a charged thin plate of an elastic material. 

The  objective of the present work was to investigate bending waves in thin charged plates and to de termine  

the conditions of violation of their  stability. 

2. Deformation of thin plates is a traditional subject of elasticity theory [4, p. 54 ]. When one says that  a 

plate is thin, it is meant  that its thickness is small compared to its dimensions along the other  two dimensions.  The  

deformations themselves are considered to be small, and the criterion of small deformations is a small displacement 

of plate points compared to its thickness. Longitudinal and transverse waves can be excited in a thin plate. For  an 

ideal conductor ,  the spectrum of longitudinal waves remains unchanged upon charging the plate. A different  

situation occurs for bending waves, for which vibrations occur along the direction perpendicular  to the plate plane 

and,  therefore,  are accompanied by its bending. The  equation of free vibrations of a plate in the absence of a field 

is written as follows [4, p. 139]: 

ph - -  02/~ + DA2~ = 0 (1) 
Ot 2 

where ~(x, y, t) is the deviation of the surface from its equilibrium position along the normal direction, x and y are 

Cartesian coordinates  in the plate plane, and D = EGh3/12(1 - o2). 

To take the electric field into account, one should insert an expression for the pressure exer ted by the field 

appearing upon deformat ion of the plate into the r ight-hand side of Eq. (1) in place of zero. 

3. We determine  the electrostatic pressure exerted on a charged plate upon its deformation (it is obvious 

that the electric-force effect is compensated if the plate is plane and nondeformed) .  The  pressure exer ted upon the 

charged surface is directed along the external  normal to the surface and equals E2/8~. The  plate has two charged 

surfaces, and the difference between the pressures exerted on the surfaces determines the resulting pressure. 

According to [2 ], the resulting pressure for a plane surface wave on a plate is as follows: 
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in the absence of a field (1) and for a charged plate 

Pe = 2 ~ k~ (2) 

(the factor 2 appears upon accounting for both charged surfaces). Here  E is the electric-field s t rength in the vicinity 

of the unper turbed  surface. The  plane wave for which expression (2) is written is chosen in the following form: 

= ~ 0 e x p ( i k r - / z ~  r =  ( x , y ) .  (3) 

4. This choice of formula for the displacement is nei ther  general  nor  suitable for accounting for a rb i t ra ry  

conditions on the plate boundary  (see below); however, it makes it possible to consider free waves on an unbounded  

plate. Upon substi tuting (2) into the r ight-hand side of Eq. (1) and choosing the solution in the form (3), we arrive 

at the dispersion relat ionship 

Dk 4--k . (4) 

A plot of w2(k) is presented in Fig. 1. It is natural  to introduce t h e  quanti ty 

ko =  e2/z D �9 (5) 

When the field is turned on, all modes with wave numbers  k smaller than k 0 are unstable: their  ampli tudes 

grow exponential ly with time. Clearly,  we are discussing the case of small plate bendings (2 >> h >> ~). To describe 

fur ther  changes,  one must  consider the case of strong bendings (2 >> ~ >_ h). It is essential that k 0 is a growing 

function of the field and equals zero at E = 0. In actual situations, due to the finite size of the plate surface,  not 

all waves are realized but only those with k > k L, where k L ~ 1 / L  ( L  being the characterist ic d imension of the 

plate surface).  As a result,  there  exists a critical field value E L upon surpassing which bending instabil i ty of the 

plate takes place: 

If the acting value E is smaller than E L, all bending waves are stable, but their  spectrum is deformed 

according to Eq. (4). 

There  exists a characteristic value of the wave vector 

k* = k 0 ,~r~- ; (7) 

if k L > k* (and k 0 > kL) ,  the mode with k = k L has the maximum amplitude growlh rate; conversely,  if k L < k*, 

maximum growth is observed for the mode with k = k* (it should be pointed out that k* is found from the condition 

co'(k*) = 0). 
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5. The considered effect of bending instability takes place for a thin charged plate for which no charge 

concentration on the edges occurs (only the plate surfaces are charged). This can be achieved if a portion is selected 

on a plane plate with a large area using, e.g., a dielectric insert clamping somehow a plate with a certain shape. 

Another possibility exists: a thin plate is placed between two parallel rigid plates having equal charges opposite to 

those of the plate so as to provide that the total charge of the capacitor with its plates is equal to zero. Exact 

evaluation of the distribution of amplitudes over the plate surface requires accounting for the boundary conditions 

along the fixing contour and the corresponding modification of expression (2) to provide coupling between the 

electrostatic pressure and the displacement. Generally, the boundary conditions for Eq. (1) are rather involved [4, 

p. 65 ]; however, in the case of fixed (fastened) plate edges the conditions are as follows [4, p. 66 ]: 

r  0~ = 0 ,  (8) 
On 

where n gives the direction normal to the plate contour (obviously, it is chosen in the plate plane). These conditions 

mean that if the plate edges are fixed, they cannot experience a vertical displacement, and, in addition, the direction 
of these edges cannot change. 

Modification of expression (2) for an arbitrary bending profile of the plate is complicated by the fact that 

in general the relationships between Pe and ~ can be approximated as follows: 

(9) 

where f(z) -- exp ( -Kz) ;  this function is a factor in the expression for the change in the field potential near the 
plate surface, which, due to small deformation amplitudes, is written as follows: ~o = E~(x, y)f(z), and K is a constant 

(in general a slowly varying function of x and y) and df/dz I z=0 = K. The expression for Pe is exact in the shortwave 

limit. 

The exact distribution of displacement amplitudes is found upon insertion of (9) into the right-hand side 

of Eq. (1), solution of this equation with regard for conditions (8), and subsequent refinement of K by the equation 
K = - A r 1 6 2  

N O T A T I O N  

p, h, E G, a, D, density, thickness, Young's modulus, Poisson coefficient, and bending rigidity of the plate; 

~, deviation of the surface from equilibrium; A, two-dimensional Laplace operator; E, electric-field strength; k and 

w, wave vector and frequency of the wave; Pe, pressure. 
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